Гид по отдыху:

Осенний отдых на Халкидиках

News image

Прилет Вылетела Вим-авиа из Домодедово в 16:30, рейс не задержали, сносно покормили, в 18:30 (по местному времени, час назад ...

На осле и серфинге

News image

Объехать остров Родос за день несложно. Если, конечно, гнать без остановок: длина острова - 70, а ширина в лучшем случае 30 км. ...

Кипр: цена вопроса

News image

Цены на Кипре за последний год скакнули значительно вверх. Об этом говорят, пишут, сокрушаются. Раньше в ресторане за пять фунто...

Греция: отдых для души и тела

News image

Говорят, лучший отдых там, где отдыхают и душа, и тело. Достоинства курортов Греции с этой точки зрения неоспоримы. На недавнем ...

Отели, с крыш которых открываются самые потрясающие виды

News image

Веб-сайт, который занимается анализом цен на размещение в отелях по всему миру, www.trivago.co.uk, опубликовал список отелей с с...

Авторизация

Популярные места:

Остров Крит

News image

- самый большой остров в Греции, граница между Европой и Африкой. На этом острове родилась и достигла совершенства первая Европе...

Остров Корфу

News image

, или Керкира по-гречески, расположен в северо-западной части Ионического моря. Совершенно не похожий на остальные греческие ост...



Архимед

Греция - Мифология

 архимед

Уроженец греческого города Сиракузы на острове Сицилия, Архимед был приближенным управлявшего городом царя Гиерона (и, вероятно, его родственником). Возможно, какое-то время Архимед жил в Александрии – знаменитом научном центре того времени. То, что сообщения о своих открытиях он адресовал математикам, связанным с Александрией, например Эратосфену, подтверждает мнение о том, что Архимед являлся одним из деятельных преемников Эвклида, развивавших математические традиции александрийской школы. Вернувшись в Сиракузы, Архимед находился там вплоть до своей гибели при захвате Сиракуз римлянами в 212 до н.э.

Дата рождения Архимеда (287 до н.э.) определяется исходя из свидетельства византийского историка 12 в. Иоанна Цеца, согласно которому он «прожил семьдесят пять лет». Яркие картины его гибели у Ливия, Плутарха, Валерия Максима и Цеца отличаются лишь в деталях, но сходятся в том, что Архимеда, погруженного в геометрические построения, зарубил римский воин. Кроме того, Плутарх сообщает, что Архимед, «как утверждают, завещал родным и друзьям установить на его могиле описанный вокруг шара цилиндр с указанием отношения объема описанного тела к вписанному», что было одним из наиболее славных его открытий. Цицерон, который в 75 до н.э. был на Сицилии, обнаружил выглядывавшее из-под колючего кустарника надгробие и на нем – шар и цилиндр.

Легенды об Архимеде. Хотя слава Архимеда как ученого связана главным образом с его замечательными математическими работами, его репутация в античности опиралась также и на приписывавшиеся ему различного рода механические устройства и инструменты, о чем нередко сообщают авторы, жившие в более позднюю эпоху. Так, считается, что Архимед был изобретателем т.н. архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов, хотя, судя по всему, такого рода устройство использовалось и раньше. Не внушает особого доверия и то, что рассказывает Плутарх в Жизнеописании Марцелла. Здесь говорится, что в ответ на просьбу царя Гиерона продемонстрировать, как тяжелый груз может быть сдвинут малой силой, Архимед «взял трехмачтовое грузовое судно, которое перед этим с превеликим трудом вытянули на берег много людей, усадил на него множество народа и загрузил обычным грузом. После этого Архимед сел поодаль и стал легко двигать конец полиспаста назад и вперед, отчего судно стало легко и плавно, словно по водной поверхности, двигаться к нему». Именно в связи с этой историей Плутарх приводит замечание Архимеда, что, «если бы имелась иная земля, он сдвинул бы нашу, перейдя на ту» (более известный вариант этого высказывания сообщает Папп Александрийский: «Дайте мне, где стать, и я сдвину Землю»). Вызывает сомнение и подлинность истории, поведанной Витрувием, что будто бы царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. «Размышляя над этой задачей, Архимед как-то зашел в баню и там, усаживаясь в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»).

Более достоверным представляется свидетельство Паппа, что Архимеду принадлежало сочинение Об изготовлении [небесной] сферы, речь в котором шла, вероятно, о построении модели планетария, воспроизводившей видимые движения Солнца, Луны и планет, а также, возможно, звездного глобуса с изображением созвездий. Во всяком случае Цицерон сообщает, что тот и другой инструмент захватил в Сиракузах в качестве трофеев Марцелл. Наконец, Полибий, Ливий, Плутарх и Цец сообщают о беснословных баллистических и иных машинах, построеннных Архимедом для отражения римлян.

Математические труды. Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволиниейных фигур или тел. Сюда относятся трактаты О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион. Существует еще одна работа – Книга о предположениях (или Книга лемм), сохранившаяся лишь в арабском переводе. Хотя она и приписывается Архимеду, в своем нынешнем виде она явно принадлежит другому автору (поскольку в тексте имеются ссылки на Архимеда), но, возможно, здесь приведены доказательства, восходящие к Архимеду. Несколько других работ, приписываемых Архимеду древнегреческими и арабскими математиками, утеряны.

Дошедшие до нас работы не сохранили своей первоначальной формы. Так, судя по всему, I книга трактата О равновесии плоских фигур является отрывком из более обширного сочинения Элементы механики; кроме того, она заметно отличается от II книги, написанной явно позднее. Доказательство, упоминаемое Архимедом в сочинении О шаре и цилиндре, было утрачено ко 2 в. н.э. Работа Об измерении круга сильно отличается от первоначального варианта, и предложение II в ней скорее всего заимствовано из другого сочинения. Заглавие О квадратуре параболы вряд ли могло принадлежать самому Архимеду, так как в его время слово «парабола» еще не использовалось в качестве названия одного из конических сечений. Тексты таких сочинений, как О шаре и цилиндре и Об измерении круга, скорее всего, подвергались изменениям в процессе перевода с дорийско-сицилийского на аттический диалект.

При доказательстве теорем о площадях фигур и объемах тел, ограниченных кривыми линиями или поверхностями, Архимед постоянно использует метод, известный как «метод исчерпывания». Изобрел его, вероятно, Эвдокс (расцвет деятельности ок. 370 до н.э.) – по крайней мере, так считал сам Архимед. К этому методу время от времени прибегает и Эвклид в XII книге Начал. Доказательство с помощью метода исчерпывания, в сущности, представляет собой косвенное доказательство от противного. Иначе говоря, если теорема записана в форме отношения «А равно В», она считается истинной в том случае, когда принятие противоположного отношения «А не равно В» ведет к противоречию. Основная идея метода исчерпывания заключается в том, что в фигуру, площадь или объем которой требуется найти, вписывают (или вокруг нее описывают, либо же вписывают и описывают одновременно) правильные фигуры. Площадь или объем вписанных или описанных фигур увеличивают или уменьшают до тех пор, пока разность между площадью или объемом, которые требуется найти, и площадью или объемом вписанной фигуры не становится меньше заданной величины. Пользуясь различными вариантами метода исчерпывания, Архимед смог доказать различные теоремы, эквивалентные в современной записи соотношениям S = 4pr2 для поверхности шара, V = 4/3pr3 для его объема, теореме о том, что площадь сегмента параболы равна 4/3 площади треугольника, имеющего те же оcнование и высоту, что и сегмент, а также многие другие интересные теоремы.

Ясно, что, используя метод исчерпывания (который является скорее методом доказательства, а не открытия новых соотношений), Архимед должен был располагать каким-то другим методом, позволяющим находить формулы, которые составляют содержание доказанных им теорем. Один из методов нахождения формул раскрывает его трактат О механическом методе доказательства теорем. В трактате излагается механический метод, при котором Архимед мысленно уравновешивал геометрические фигуры, как бы лежащие на чашах весов. Уравновесив фигуру с неизвестной площадью или объемом с фигурой с известной площадью или объемом, Архимед отмечал относительные расстояния от центров тяжести этих двух фигур до точки подвеса коромысла весов и по закону рычага находил требуемые площадь или объем, выражая их, соответственно, через площадь или объем известной фигуры. Одно из основных допущений, используемых в методе исчерпывания, состоит в том, что площадь рассматривается как сумма линейных отрезков, а объем – как сумма плоских сечений. Архимед считал, что его механический метод не имеет доказательной силы, но позволяет находить предварительный результат, который впоследствии может быть доказан более строгими геометрическими методами.

Хотя Архимед был в первую очередь геометром, он совершил ряд интересных экскурсов и в область численных расчетов, пусть примененные им методы и не вполне ясны. Из доказательств видно, что он располагал алгоритмом получения приближенных значений квадратных корней из больших чисел............ Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную.

В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь.

В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии.

В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело. В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому «всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость». В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.

Влияние Архимеда. В отличие от Эвклида, Архимеда вспоминали в античности лишь от случая к случаю. Если мы что-то знаем о его работах, то лишь благодаря тому интересу, который питали к ним в Константинополе в 6–9 в. Эвтокий, математик, родившийся в конце 5 в., прокомментировал по крайней мере три работы Архимеда, по-видимому, наиболее известные в то время: О шаре и цилиндре, Об измерении круга и О равновесии плоских фигур. Работы Архимеда и комментарии Эвтокия изучали и преподавали математики Анфимий из Тралл и Исидор из Милета, архитекторы собора св. Софии, возведенного в Константинополе в правление императора Юстиниана. Реформа преподавания математики, которую проводил в Константинополе в 9 в. Лев Фессалоникийский, по-видимому, способствовала собиранию работ Архимеда. Тогда же он стал известен мусульманским математикам. Теперь мы видим, что арабским авторам недоставало некоторых наиболее важных работ Архимеда, таких как О квадратуре параболы, О спиралях, О коноидах и сфероидах, Исчисление песчинок и О методе. Но в целом арабы овладели методами, изложенными в других работах Архимеда, и нередко блестяще ими пользовались.

Средневековые латиноязычные ученые впервые услышали об Архимеде в 12 в., когда появились два перевода с арабского на латынь его сочинения Об измерении круга.. Лучший перевод принадлежал знаменитому переводчику Герарду Кремонскому, и в последующие три столетия он послужил основой многих изложений и расширенных версий. Герарду принадлежал также перевод трактата Слова сынов Моисеевых арабского математика 9 в. Бану Мусы, в котором приводились теоремы из сочинения Архимеда О шаре и цилиндре с доказательством, аналогичным приведенному у Архимеда. В начале 13 в. Иоанн де Тинемюэ перевел сочинение О криволинейных поверхностях, по которому видно, что автор был знаком с другой работой Архимеда – О шаре и цилиндре. В 1269 доминиканец Вильгельм из Мербеке перевел с древнегреческого весь корпус работ Архимеда, кроме Исчисления песчинок, Метода и небольших сочинений Задача о быках и Стомахион. Для перевода Вильгельм из Мербеке использовал две из трех известных нам византийских рукописей (рукописи А и В). Мы можем проследить историю всех трех. Первая из них (рукопись А), источник всех копий, снятых в эпоху Возрождения, по-видимому, была утрачена примерно в 1544. Вторая рукопись (рукопись В), содержавшая работы Архимеда по механике, в том числе сочинение О плавающих телах, исчезла в 14 в. Копий с нее снято не было. Третья рукопись (рукопись С) не была известна до 1899, а изучать ее стали лишь с 1906. Именно рукопись С стала драгоценной находкой, так как содержала великолепное сочинение О методе, известное ранее лишь по отрывочным фрагментам, и древнегреческий текст О плавающих телах, исчезнувший после утраты в 14 в. рукописи В, которую использовал при переводе на латынь Вильгельм из Мербеке. Этот перевод имел хождение в 14 в. в Париже. Он использовался также Якобом Кремонским, когда в середине 15 в. тот предпринял новый перевод корпуса сочинений Архимеда, входивших в рукопись А (т.е. за исключением сочинения О плавающих телах). Именно этот перевод, несколько поправленный Региомонтаном, был опубликован в 1644 в первом греческом издании трудов Архимеда, хотя некоторые переводы Вильгельма из Мербеке были изданы в 1501 и 1543. После 1544 известность Архимеда начала возрастать, и его методы оказали значительное влияние на таких ученых, как Симон Стевин и Галилей, а тем самым, хотя и косвенно, воздействовали на формирование современной механики.




Читайте:


Добавить комментарий


Защитный код
Обновить

Древняя Греция:

News image

Греция. История

Греция - самое древнее и уникальное государство, а также прародитель классической школы. В этой неповторимой стране часто пересекаются традиции Вост...

News image

Древняя Греция (Эллада)

, общее название территории древнегреческих государств на юге Балканского полуострова, островах Эгейского моря, побережье Фракии, по западной берего...

News image

Наука Древней Греции

Исторические условия, сделавшие возможным необычайный по сравнению с культурами Древнего Востока прогресс философии, науки и искусства античной Грец...

Популярные заметки:

Отдых в Греции

News image

У любого человека в мире слово «Греция» или «Эллада» ассоциируется с понятиями демократичности, источником зарождения культуры и искусства, философи...

Греческие острова

News image

Ай вонт ту ве остров! Подумаешь, острова! У нас, между прочим, у самих островов - как собак нерезаных: взять хоть Новую Землю, или Маканруши, да хо...

И Бог создал Грецию

News image

Греция - одно из тех райских мест на Земле, куда хочется обязательно вернуться. Морских курортов в этой средиземноморской стране очень много - и на ...

Острова: Курорт с прошлым (о. Крит)

News image

Крит - одно из самых популярных мест отдыха в Греции. Хотя можно чудно отдохнуть и на материке - на Пелопоннесе, в Халкидиках - или на Кикладских и ...

Athena Palace. Заповедная страна

News image

Есть на полуострове Ситония удивительное место: там время течет иначе, там встретились эпохи. Там, словно в заповедной стране, повстречались красота...

Осень в Греции - период знатоков

News image

В последние годы все большую популярность у россиян приобретает отдых в Греции. Это и неудивительно: теплое море, прекрасные пляжи, великолепный сер...

Комплекс отелей Aldemar

News image

на о.Родос состоит из 2 отелей Paradise Royal Mare - Paradise Village. Отель Paradise Royal Mare 5* предлагает развлекательные программы в течение...

Эллада

News image

Мне хочется отправится в дорогу, если я вижу картинку перед глазами. Несколько ярких фотографий из чужого путеводителя или потрясающей красоты пано...

Бархатный сезон. Лучшее время для отдыха в Греции!

News image

Наступление осени вовсе не всегда знаменует собой увядание природы. С окончанием августа приходит сентябрь - самое благоприятное время для путешеств...